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Fig. 2 Behavior of maximum real part in the neighborhood of optimal
solution.

where ¢ is a positive constant. Details on these root distributions
are discussed elsewhere.>* Of these ten root configurations, the
optimal condition used by Amieux and Dureigne,' namely
a,* =0, represents an a priori restriction to one of the four types
(111, VII, VIII, X); the other possibilities are discarded at the
outset. Their condition is therefore in error since unless there are
further constraints onthe 4; (i = 1, .. ., 4), all types are possible.

On the other hand, suppose that the true optimal solution
corresponds tc one of the four types (III, VII, VIII, X). Then
their analytical solutions can be derived (exactly) without
difficulty. With a, b, ¢, d, e, p, r, ®* as defined by Amieux and
Dureigne! and with 4, = (1+pb)/(1 + pa), 4, = (r+w?+pc)/
(1+pa), A3 = (w0 +pd)/(1+pa), A, = (@’r+pe)/(1+pa), then
the results can be established as described in Table 1.

Table 1 Conditions on 4; (i = 1,...,4) for optimal solution ¢*

Type of
optimal Optimal solution = g* ConditionsonA4;,i=1,...,4
solution
Amieux and ¢* = 2[p(—aw*+cw?— Nil
Dureigne % w
Type III q*=2r—w?+plar+br+ 243 < A4, < 64,
¢—2d+bw* ~3aw?)+ 164,34, + 4,24, —
p(ab(r + w?) + 124, 4,45+
c(a+b)—2a20* — 204,2 =0
4ad) + p*(abc— A 24,2424,
2a*d))/(1 + pb)*'? 24,4,45—
24,4,2>0
Type VII Same as Type II1 245 < A1 A, <64,
' 164, Ay + A, 24,7 —
124, 4,45 +204;2 = 0
Type VIII  g* = 2[1+pa]- [(1+pb)? - Ay—Ag—A5*/A,% >0
(@*(1=r)+p(d—e)— A3?— A A, A3+ 4,7 (45—
(1+pa) - (0* +p2d? + AY =0
2pd*)/i(1 + pb)*/* -
(@ +pd)'1?]
Type X q* = 41 +pa)- (0? + AA,—64,=0
pd)*2[(1 4 pb)3/? A2 43— 4,47 — 457 =
24,45
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It can be seen that none of the exact solutions reduces to
Amieux and Dureigne’s! result. The discrepancy indeed comes
from the following three approximations: 1) the characteristic
equation is approximated by a truncated Taylor series; 2) the
real part of the approximated characteristic equation is again
approximated ; and 3) the imaginary part of the approximated
characteristic equation is not satisfied by the solution to 2).

The discrepancy can be illustrated by a numerical example of
their ball-in-tube system. For m = 0.150 Kg, w, = 2IT rad/sec,
o =0.4I1 rad/sec, I, =33/1.2 m®*Kg, / =0.1730 m, g = 0.04,
the Amieux and Dureigne’s optimal solution is {* = 0.07897
(from ¢* = 2.8 m|w—w,|[p(w+w;)/w]*/?) with 4 roots having
the same real part —0.094035.

The true optimal solution is found to be of type I and the
variation of the maximum real part with { is shown in Fig. 2.
This proves that a wrong assumption on root distribution was
used. The indirect optimization method proposed by Hughes?»>
gives the optimal solution {* = 0.07191 and the maximum real
part = —0.070129 as the solution to T, = 7T,/0{ = 0, where
T, = a,*a,*as* —a;** —a,*%a,*. '
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Reply by Author to P. K. Nguyen

J. C. AMIEUX*
N ASA Goddard Space Flight Center, Greenbelt, Md.

. K. NGUYEN brought to our attention the outstanding

study done by R. L. Borrelli and I. P. Leliakov' published
at the same time as our paper,? unknown to the authors. For
the class of dynamical systems defined in Ref. 1, the problem is
now completely solved. P. C. Hughes and P. K. Nguyen® utilize
the variational approach to minimize the real part of the least
damped root of the system. Let us compare the results of our
approach and P. K. Nguyen’s approach with Borrelli and
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Leliakov’s one for the ball-in-tube damper case.? We recall® the
system characteristic equation

2_
pu)zmlﬁ_m[ r +w_,m3@iw_3)}2+
-p

1—p 1-p
2 2 3
w wm
A+t —p—
T 1, P,

with
— 2
r=gws

Following the authors of Ref. 1, our problem fits their formula-
tion with

0, =4 Oy =T
A1=—1—, A2=MM’ A= wzy
1-p 1—-p 1—-p

4y = P

Note that Ref. 1, p. 357 should read

a, =Ha,—HA,+ A,
and therefore

G*=HA,—A,—H?

Now we verify the inequality G <2H so that, according to
Ref. 1, the only optimum found is of type (2,2)—ie, one
double complex root. Now the least damped mode has its real
part given exactly by
8= —G2H"? = —{f plo— w3 0+ ws)w(l—p)]"?

and the optimal set of parameters is

g* = 2(1- )" lo— o3| [plo+ 0y)/w] '

* = 0® + p(w;> — 0¥ /w)
Comparing these results with ours, recalling that with our para-
meters p is negligible compared to 1 (p ~ 2.25x 10™%), we find an
amazing agreement.

The value of r shows that indeed the tuned conditions yield
the optimum damping. We further point out that we were
seeking a double root, and hence have expanded the Taylor’s
series to the’second-order term.

If we analyze now P. K. Nguyen’s numerical results, we find:
1) a less optimal damping, § = —0.070129 as compared to our
6= —0.094035; 2) a root configuration that does not agree
with the optimal one as shown in Ref. 1 and that is not even
one of the extraneous root geometries, which could be considered
as local optima; and 3) no mention is made of the value of the

" second parameter available, namely r. The optimum must really
be found with respect to two parameters, in most cases, as
indicated by Borrelli and Leliakov.

This approach could also be used on the single-degree-of-
freedom gyroscope. I take the opportunity here to correct the
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typographical errors? in the mathematical formulation, which
should read as follows:

Iy +ww,)—Ea—To=0
I, —(H+Iw)w, —(H—Jw;)a =0
Ji+éa+ T +Hwz)a+Ji, +Hw, =0

The characteristic equation is now

Py =2+ é(l+P)/13+[w(w+ph)—p(w3——h)(h—w)+
r 2, ¢ 2
hw3+j(1+/1) A +j(w+ph) A+ hoos(w+ ph)+

F( 2
"J*GH‘P)

The problem is then well suited for the Borrelli and Leliakov
method with

1 1
O'1=é, 02=F, A1=3(1+p), ’ A3 =j(co+ph)2

A4, = oo+ ph)+hw;— plo;—h) (h—w), A, = hoo(o+ ph)
Now if we keep only the first-order term in p, we find

1 1/2
5= —z|o—h|p—2TP_ \
2b w+plwo+h)
and
w+w 12
* = w—H|p——3
1 [ l[path(w-%h)}

r
r* = j(1+p)+hw3 =w?+pA

where A is a positive expression in w and h. These expressions
are fully consistent with our results, and prove the validity of
our assumptions and the efficiency of our approach, as far as
small dampers for spinning spacecraft are concerned. Further
work has been done using the same approach on two-degrees-
of-freedom dampers, which lead to a sixth-order system with
real characteristic coefficients that can be reduced to a third-order
system with complex characteristic coefficients, for which Borrelli
and Leliakov’s method of analysis cannot be readily used.
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